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Nutrients in Rivers
Perspectives

Between each of his excursions through the biota, [Molecule] X lay in
the soil and was carried by the rains, inch by inch, downhill... X rode
down the spring freshet, losing more altitude each hour than heretofore in
a century. He ended up in the silt of a backwater bayou, where he fed a
crayfish, a coon, and then an Indian, who laid him down to his last sleep
in a mound on the riverbank. One spring an oxbow caved the bank, and
after one short week of freshet X lay again in his ancient prison, the sea.

— Aldo Leopold (1949), “Odyssey” in A Sand County Almanac




Nutrients in Rivers
Perspectives

It has been said that streams are the gutters down which flow the ruins
of continents.

— Luna B. Leopold ez al. (1964), Fluvial Processes in
Geomorphology

_FHuvial Processes
in Geomorphology




River Ecosystems
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Transport of Materials




Transport and Transformation




Outline for Today’s Talk

* Landscape controls of river nutrient
concentrations

— Brazos River

* Metabolism and organic carbon processing
by bacteria 1n a river network

— Rio Grande drainage
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Research Questions

* What effect do land-use
and physiographic
gradients have on nutrient
concentrations across a
large river network?

 What are the individual
and combined influences
of these factors on river
nutrient dynamics?




Brazos River, TX

Legend

- Urban/Impervious Cover
|:| Cultivated Ag/Pasture

0815 175 350 525 700 - Range

- Forest
- Open Water
- Wetlands
- Barren




Brazos River, TX
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Methods

Water collected over 3
seasons (2008 — 2009)

Environmental parameters

Nutrients
— Total and dissolved N and P
— Particulates (NVSS, C, N, P)
— POC and DOC
— Chl a

GIS




LULC Scales Used

Local buffer (100m buffer, 2km upstream)

’/Q

Catchment




Data Analysis

e Used a multivariate analytical framework

 Redundancy Analysis (RDA)

— Relationships between LULC and Physiographic
predictors and 1n-stream nutrient concentrations

— Can express gradients across the watersheds as
combinations of variables

* Variance Partitioning

— Evaluate the independent and combined effects of
the two predictor sets on nutrient concentrations

— LULC versus Physiographic



Predictor Variables

 Land Use/Land * Physiographic
Cover variables
— Urban — Longitude [Rainfall]
— Cultivated Agriculture — Catchment Area
— Rangeland — Stream Density
— Forest — Ecoregion (Level-11I)
— Open Water — Mean Slope

— Wetlands — Max Slope



LULC Predictors
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Variance Partitioning

Residuals = 49.4%




What Does This Mean?
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What Does This Mean?

* Physiography (geology, landscape setting,
climate) set the “baseline” for nutrients

— LULC was also important, but to a lesser extent

* Especially relevant for large drainages that
cross environmental gradients

— Multiple ecoregions
e Setting water quality criteria?
— Ecoregion or drainage-based vs state-wide

— Implications for identification of reference
systems

Ad




Major Gradients in Texas
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What Does This Mean?

* Physiography (geology, landscape setting,
climate) set the “baseline” for nutrients

— LULC was also important, but to a lesser extent

* Especially relevant for large drainages that
cross large environmental gradients

— Multiple ecoregions
e Setting water quality criteria?
— State-wide vs Ecoregion or drainage-based

— Implications for identification of reference
systems
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Outline for Today’s Talk

* Landscape controls of river nutrient
concentrations

— Brazos River

* Metabolism and organic carbon processing
by bacteria 1n a river network

— Rio Grande drainage



Inland Waters as “Reactive Pipes”
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Inland Waters and

Global Carbon Cycling

2.1
1.9-3.23 Pg/yr
Pg/yr

Raymond et al. 2013; Cole et al. (2007)



Rivers and Global Carbon Cycling
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Bacterial C Metabolism in Rivers
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Bacteria and Organic Carbon

e All OC 1s not the same
— Labile vs refractory

J—

* Series of pools varying
in decomposition rates

 Autochthonous more
labile than
allochthonous

(Sondergaard and Middelboe 1995, del Giorgio and Davis 2002, Ostapenia et al 2009)



Bacterial C Metabolism in Rivers
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Bacterial C Metabolism in Rivers
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Questions to Consider

* How does bacterial metabolism respond to
environmental gradients in a complex riverine
network?

 What is the relative importance of
physicochemical factors (e.g., inorganic
nutrients) versus factors related to C
quantity/quantity in determining bacterial C
metabolism?



Lower Rio Grande/Rio Bravo del Norte
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Study Sites and Methods
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Study Sites and Methods
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Study Sites and Methods

14 sites sampled

Before, during, and
after agricultural
growing season (2010)

Nutrient and water
quality data

BP and BR

e 3H-leucine BP and 2-d
BOD incubations

DOC, Abs,,,, OC lability
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Organic Carbon Lability

Long-term BOD
incubations

First-order
decomposition
kinetics

BOD, = BOD_, (1-¢%)
<1 um water

Day 2, 4, §, 16, 20
BOD , O, converted
‘603C by multiplying by

Solve for

concentration of OC;
and &

i mlu

Leonov 1974, Ostapenia et al 2009



Data Analysis

* Physicochemical
— Temp, DO, salinity
-
— TN, TP, SRP, NH,*,
NO;*
* C Quality and
Quantity
— DOC, OC,
— Absyy
— POM
— Bacterial C:N:P




ite Groups

S
3\

- . — KM




X10° cells/mL

Bacteria Density and Algal Biomass
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Bacteria Production and Respiration

BPr | BR

mg/L/h
S

10 -




BGE
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Bacteria Metabolism Responses

* Substantial spatial variation in responses

* Constructed RDA models to explore the

influence of these factors on biological
responses (BP, BR, BGE, Chl g, Bact Dens)

* Two groups of factors
— Physicochemical factors

— C quality and quantity
e Variance partitioning



Physicochemical Predictors
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Physicochemical Predictors

RDA 2 (10.7%)

1 $ 4 = K.
NVSS Spring i
£ o BR L J e
L
9
2 1 0 1 2

RDA 1 (15.1%)



Physicochemical Predictors
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C Quantity and Quality Predictors
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Relative Importance of Predictors?

* Physicochemical predictors
—13.9%

* C Quantity and Quality predictors
—17.2%

» Approximately equal amount of
variation in bacterial responses
explained



Conclusions

* Spatial variation 1n water quality and
biological responses

 Substantial variation 1n bacterial metabolism

— Productivity and density increased with DOC,
OC;, 1norganic nutrients

— Respiration increases with water color and
suspended materials

« Management of bacteria in the basin
associated with both inorganic N and P and
the amount and quality of DOC



Overall Conclusions

Rivers are integrated parts of landscapes

Receive materials, transport materials, and
transform materials

Landscape setting 1s important

Biological functions also dependent upon
landscape position
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